after centrifugation was lyophilized. The residue was redissolved in 150 mL of H_2O , saturated with NaCl, acidified to pH 2 with concentrated HCl, filtered, and extracted continuously with ether for 24 h. The extract was evaporated under reduced pressure to a viscous oil, 2.34 g, consisting mainly of 1a (by NMR analysis). The crude product was methylated (CH_2N_2) and distilled in a Kugelröhr apparatus, bp 110 °C (0.2 mm). The product showed only traces of impurities by GC. A portion of the main product separated by preparative GC had NMR (CDCl₃) and mass spectra identical with the spectra of methyl (±)-2,3-dihydroxy-3methylbutyrate.5

Synthesis of (E)-[4,4,4-2H₃]-3-methylcrotonic Acid and Its Incubation wtih Ps. putida. Methyl tetrolate [bp 52-53 °C (22 mm)] was prepared by treatment of tetrolic acid with excess CH_2N_2 /ether. The product (6.78 g, 0.069 mol) was converted to methyl (E)-[4,4,4-²H₃]-3-methylcrotonate, 2c, 7.0 g (0.060 mol), by treatment with $Li(CD_3)_2Cu$, following a procedure closely analogous to that described^{4a,8} for the preparation of ethyl (Z)-[4,4,4-²H₃]-3-methylcrotonate. The NMR spectrum of 2c had δ (CDCl₃) 1.90 (trace, ca. 0.1 H), 2.15 (3 H, d, J = 1.5 Hz), 3.63 (3 H, s), 5.54 (1 H, q, J = 1.5 Hz).

The product (7.0 g) was saponified by treatment with 2 N NaOH (50 mL), stirring at 25 °C for 40 h. Upon acidification (HCl), the precipitate was filtered, washed with cold H₂O, and air-dried, giving 2b: 4.48 g; NMR δ (CDCl₃) 1.90 (ca. 0.1 H, d, J = 1.5 Hz), 2.18 (ca. 2.8 H, d, J = 1.5 Hz), 5.69 (1 H, q, J = 1.5Hz), 11.08 (1 H, br s, D₂O exchangeable). An additional 1.15 g of 2b was obtained by ether extraction of the aqueous filtrate.

The product (1.0 g in 10 mL of H₂O, adjusted to pH 7.4 with KOH) was incubated as previously described by Ps. putida cells from two 100-mL cultures, and the crude product (400 mg) was isolated as before. After purification by Kugelröhr distillation of the methylated product, 1c (295 mg) was obtained. After removal of trace impurities by preparative GC, the product had NMR (CDCl₃ + D_2O) δ 1.22 (ca. 3 H, s), 1.30 (ca. 0.1 H, s), 3.75 (3 H, s), 4.93 (1 H, s).

Registry No. 1a, 63903-90-2; 1b, 75347-92-1; 1c, 75365-50-3; 2a. 541-47-9; 2b, 75347-93-2; 2c, 75347-94-3; isovaleric acid, 503-74-2; methyl tetrolate, 23326-27-4.

Communications

Oxygen Functionalization in Cyclooctatetraene via Singlet Oxygenation: Synthesis and **Transformations of**

anti-7,8-Dioxatricyclo[4.2.2.0^{2,5}]deca-3,9-diene, the Endoperoxide of the Bicyclic Valence Tautomer of Cyclooctatetraene

Summary: The novel endoperoxide of the bicyclic valence tautomer of cyclooctatetraene is prepared, characterized, and transformed into a series of new and valuable synthetic intermediates derived from the bicyclo[4.2.0]octa-2,4,7triene skeleton via base-catalyzed isomerization and MnO₂ oxidation, thermolysis and mCPBA oxidation, triphenylphosphine deoxygenation, and exhaustive diimide reduction.

Sir: The fact that cyclooctatetraene (1) is inert toward singlet oxygenation, either via photosensitized¹ or chemical² generation of singlet oxygen, obliges indirect strategies for the synthesis of the desirable endoperoxides 2 (Scheme I). In the case of the synthetically more challenging endoperoxide 2b, derived from bicyclic valence tautomer 1b, the indirect sequence $1a \rightarrow 3 \rightarrow 4 \rightarrow 2b$ (Scheme I) has also failed³ since so far it has not been possible to debrominate the known⁴ endoperoxide 4 under sufficiently mild conditions at which the peroxide linkage is preserved. Presently we report the preparation of the endoperoxide 2b via the sequence $1a \rightarrow 3 \rightarrow 1b \rightarrow 2b$ (Scheme I) and its chemical transformations into a number of useful difunctionalized oxygen derivatives of the bicyclo[4.2.0]octa-2,4,7-triene skeleton.

Analogous to Vogel et al.,⁵ the dibromide 3 was debro-

minated with *n*-BuLi in diethyl ether at -60 °C. The resulting solution of the sufficiently stable bicyclic valence tautomer 1b was submitted to photosensitized oxygenation at -30 °C for 2 h with tetraphenylphorphyrin (TPP) as the sensitizer and a 150-W sodium lamp as a light source. The endoperoxide 2b was obtained quantitatively (mp 75-76 °C, recrystallized from a CH_2Cl_2/n - C_6H_{14} mixture; 85% yield).6,7

The chemical transformations of the novel endoperoxide 2b are summarized in (Scheme II). For example, via pathway $2b \rightarrow 5$ the known dienedione 5 was prepared in an overall 85% yield (mp 50-51 °C, after silica gel chromatography; lit.⁴ mp 51-52 °C); however, our sequence 1a \rightarrow 3 \rightarrow 1b \rightarrow 2b \rightarrow 5 entails considerably less work.⁸ On the other hand, when a benzene solution of 2b is heated^{3b} at 100 °C for 1 h, the new diepoxide 6 was obtained quantitatively^{6,9} (mp 105-107 °C, recrystallized from a CH_2Cl_2/n - C_6H_{14} mixture; 85% yield). Treatment with *m*-chloroperbenzoic acid (mCPBA) in CH_2Cl_2 led to the intriguing trioxide 7 in 70% yield (mp 209-210 °C, recrystallized from a $CH_2Cl_2/n-C_6H_{14}$ mixture),^{6,10} representing the first of a total of six trioxide isomers of the bicyclo[4.2.0]octa-2,4,7-triene valence isomer of cyclooctatetraene.^{3b} An X-ray analysis of 7 (Dr. K. Peters, Max-Planck-Institut für Festkörperforschung, Stuttgart, for the X-ray determination; complete details will be disclosed in a full paper on this subject) reveals that the epoxy oxygens on the cyclohexane ring are syn to one another, but anti with respect to the cyclobutane ring, and that the epoxy oxygen on the cyclobutane ring is syn with

(b) For 5: "H NMR (CDCl₃, Me₄SI) δ 5.10 (d, 2 H, β = 3 H₂), 3.30 (s, 2 H), 3.45 (d, 2 H, J = 3 H₂), 6.20 (s, 2 H); IR (KBr) 3130, 3000, 2915, 1580, 1420, 1060, 950, 860 cm⁻¹. (10) For 7: ¹H NMR (CDCl₃, Me₄Si) δ 2.81 (s, 2 H), 3.13 (m, 2 H), 3.45 (m, 2 H), 4.10 (s, 2 H); IR (KBr) 3000, 2980, 2940, 980, 940, 860 cm⁻¹.

^{(1) (}a) Gollnick, K. Adv. Photochem. 1968, 6, 1. (b) Matsuura, T.; Horinaka, A.; Nakashima, R. Chem. Lett. 1973, 887

⁽²⁾ Adam, W.; Cueto, O.; De Lucchi, O.; K.-H. Hill, unpublished re-(a) Adam, W.; Odeto, C., De Lucchi, C., R. H. H.; in published to sugen sources such as 1,4-dimethoxy-9,10-diphenylanthracene 1,4-endoperoxide at elevated temperature (ca. 100-120 °C) were so far unsuccessful.
 (a) Adam, W.; Balci, M.; De Lucchi, O., unpublished results. (b) W. D. L. W. The transformation of the subscripts of the subscripts.

Adam, W.; Balci, M. Tetrahedron 1980, 36, 833. Cf. eq 19, p 839, and ref 36 therein

⁽⁴⁾ Oda, M.; Kayama, Y.; Kitahara, Y. Tetrahedron Lett. 1974, 2019.

⁽⁵⁾ Vogel, E.; Kiefer, H.; Roth, W. R. Angew. Chem. 1964, 76, 432; Angew. Chem., Int. Ed. Engl. 1964, 3, 442.

⁽⁶⁾ All new compounds exhibited satisfactory elemental composition

by combustion analysis. (7) For 2b: ¹H NMR (CDCl₃, Me₄Si) δ 3.20 (q, 2 H), 4.59 (q, 2 H), 5.91 (s, 2 H), 6.20 (dd, 2 H); IR (CCl₄) 3120, 3060, 2970, 1375, 1300, 950, 920 cm^{-1}

⁽⁸⁾ Adam, W.; Balci, M.; Rivera, J. Synthesis 1979, 807.

⁽⁹⁾ For 6: ¹H NMR (CDCl₃, Me₄Si) δ 3.10 (d, 2 H, J = 3 Hz), 3.30 (s,

respect to the cyclohexane ring, as illustrated in Scheme II. We designate 7 as the syn-anti-syn configuration. This stereochemical course of epoxidation of 6 is indeed surprising since Dreiding models suggest that the syn approach of the mCPBA is sterically less encumbered than the anti approach. It appears that stereoelectronic factors play a role in this unusual epoxidation. On triphenylphosphine deoxygenation of endoperoxide 2b in CHCl₃ at 25 °C the epoxydiene 8 was obtained in 70% yield (mp 81-82 °C, recrystallized from CH_2Cl_2/n - C_6H_{14} mixture after silica gel chromatography at -15 °C).^{6,12} Finally, on diimide reduction¹¹ of endoperoxide 2b the saturated bicyclic peroxide 9 was obtained in 80% yield (mp 123 °C, recrystallized from $n-C_6H_{14}$).^{6,13} Its structure is confirmed by independent synthesis starting from cyclooctatriene.¹⁴

The successful singlet oxygenation of the bicyclic valence isomer of cyclooctatetraene opens up new avenues for its synthetic manipulation and utilization. Preliminary efforts reveal that cyclooctatetraene itself can be oxygen difunctionalized via indirect routes to the potentially valuable endoperoxide 2a.¹⁵

Acknowledgment is made to the donors of the Petroleum Research Fund (11022-AC-1), administered by the American Chemical Society, the National Science Foundation (Grant No. CHE-78-12621), the National Institutes of Health (Grant No. GM-00141-05 and RR-8102-07), and the Universities of Puerto Rico and Würzburg for generous financial support. We thank BASF for a generous sample of cyclooctatetraene, Professor H. Hopf (Universität Braunschweig) for the ¹³C NMR spectra, and Dr. K. Peters for the X-ray determination.

Registry No. 1b, 4011-16-9; 2b, 6841-69-6; 3, 4840-84-0; 5, 54251-47-7; 6, 75266-45-4; 7, 75266-46-5; 8, 75266-47-6; 9, 249-89-8.

Supplementary Material Available: Experimental details of these transformations (3 pages). Ordering information is given on any current masthead page.

(16) NIH Career Development Awardee (1975-1980). Send correspondence to the Würzburg address.

Waldemar Adam,*¹⁶ Omar Cueto, Ottorino De Lucchi

Department of Chemistry University of Puerto Rico Rio Piedras, Puerto Rico 00931, and Institute of Organic Chemistry University of Würzburg D-8700 Würzburg am Hubland, West Germany Received June 17, 1980

Palladium-Catalyzed Polyhetero-Claisen Rearrangement

Summary: The $S \rightarrow N$ allylic rearrangement of S-allylthioimidates is performed efficiently by the catalysis of Pd(II) salt to give N-allylthioamides (71-100% yields).

Sir: The thioamide group has increasingly been recognized as a useful synthon in organic syntheses.¹ Although the transformation of secondary thioamides to tertiary thioamides is sometimes required in a reaction sequence, a general and satisfactory procedure for such transformation is presently lacking.² One apparent possibility is the utilization of the rearrangement of S-allylthioimidates to N-allylthioamides, but this type of $S \rightarrow N$ rearrangement is one of the least studied polyhetero-Claisen rearrangements,³ probably owing to the many possible side reactions (e.g., double bond isomerization, deallylation, etc.).

We have found that Pd(II) catalyzes nicely the $S \rightarrow N$ allyl group migration of S-allylthioimidates and we report the very efficient N-allylation reaction of secondary thioamides.

S-Allylthioimidate (1), upon heating in tetralin at 150 °C for 4 h, provided mainly the double bond isomerization product, S-propenylthioimidate (3, 93%), together with a small amount of the desired rearrangement product, N-allyl-N-methylthiobenzamide (2,7%) (Scheme I). On the other hand, in the presence of 1 mol% Pd(II) 1 was found to rearrange selectively to give 2 (THF, reflux, 2 h).

Some preliminary results are summarized in Table I, which reveals the efficiency and some interesting features of the reaction. The efficiency of the Pd(II) salt (as $PdCl_2$ or $PdCl_2$ -(PhCN)₂) is evident by a comparison of entries 1 and 3. Under the same conditions except for the absence of Pd(II), no reaction took place and 1 was recovered Triphenylphosphine retards the reaction completely. (entry 2).Neither Pd(0) (as tetrakis(triphenylphosphine)palladium) nor other metal salts (NiCl₂, CuCl, $HgCl_2)^4$ effected the S \rightarrow N rearrangement. Accompanied by these observations, the regiospecific rearrangements of

0022-3263/80/1945-5221\$01.00/0 © 1980 American Chemical Society

 ⁽¹¹⁾ Adam, W.; Eggelte, H. J. J. Org. Chem. 1977, 42, 3987.
 (12) For 8: ¹H NMR (CCl₄, Me₄Si) δ 2.96-3.37 (m, 4 H), 5.92 (d, 2 H),
 6.23 (m, 2 H); IR (CCl₄) 3120, 3080, 3060, 2900, 1580, 1470, 1080, 830 cm⁻¹. (13) For 9: ¹H NMR (CCl₄, Me₈Si) δ 2.18 (m 8 H), 3.03 (m, 2 H), 3.93 (m, 2 H); IR (CCl₄) 2960, 2880, 1475, 1455, 1040, 945 cm⁻¹.

⁽¹⁴⁾ Adam, W.; Erden, I. Tetrahedron Lett. 1979, 2781. The physical constants and spectral data reported for the bicyclic peroxide 9 (structure 3b in ref 14) are erroneous. We thank Professor H. D. Martin and Mr. M. Kurze of this Institute for calling our attention to this error and for a sample of 1,3,5-cyclooctatriene. Cf. correction in: Tetrahedron Lett., in pre

⁽¹⁵⁾ In our hands the endoperoxides 2b and 9 were sufficiently stable at room temperature (ca. 20 °C) for routine manipulation; however, in view of the inherent danger of organic peroxides in general, all safety precautions should be taken when working with such compounds.

^{(1) (}a) Woodward, R. B. Pure Appl. Chem. 1968, 17, 519; 1971, 25, 283;
1973, 33, 145. (b) Eschenmoser, A. Q. Rev., Chem. Soc. 1970, 24, 366. (c) Takano, S.; Hirama, M.; Araki, T.; Ogasawara, K. J. Am. Chem. Soc. 1976, 98, 7087. (d) Tamaru, Y.; Harada, T.; Yoshida, Z. Ibid. 1978, 100, 1923; 1979, 101, 1316; 1980, 102, 2392. (e) Tamaru, Y.; Harada, T.; Iwamoto, H.; Yoshida, Z. Ibid. 1978, 100, 5221. (f) Tamaru, Y.; Harada, T.; Yoshida, Z. Tetrahedron Lett. 1978, 2167; 1979, 3525. (g) Tamaru, Y.; Kagotani, M.; Yoshida, Z. J. Org. Chem. 1979, 44, 2816.
(2) (a) Trost, B. M.; Kunz, R. A. J. Am. Chem. Soc. 1975, 97, 7152 and references cited therein. (b) Zabicky, J. "The Chemistry of Amide"; Interscience: New York, 1970.
(3) For comprehensive review, see: (a) Rhoads, S. J.; Raulins, N. R.

⁽³⁾ For comprehensive review, see: (a) Rhoads, S. J.; Raulins, N. R. Org. React. 1975, 22, 1; (b) Bennet, G. B. Synthesis 1977, 589; (c) Ziegler, F. E. Acc. Chem. Res. 1977, 10, 227.